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Kalman Filtering is a least squares estimation process 

to determine the ‘state’ of a ‘system’ from a sequence 

of measurements at discrete intervals of time.  In the 

previous images the system is the yacht Macquarie 

Innovation (attempting to break the World Sailing 

Speed Record) and the state is the yacht’s position, 

velocity and acceleration.  The measurements were 

GPS positions (E,N) at 0.1 sec time intervals. 

A Kalman Filter is a set of (matrix) equations applied in 

a recursive sequence. 
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References for these lectures available at 

www.mygeodesy.id.au in the folder Least Squares: 

[1] Least Squares and Kalman Filtering (91 pages) 

[2] Notes on Least Squares (224 pages) 

[3] Combined Least Squares (21 pages) 

[4] Kalman Filter and Surveying Applications (30 pages) 

Matrix algebra is used extensively in least squares and 

Kalman filtering.  A useful summary is contained in 

Appendix A of [2]. 
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REVIEW OF LEAST SQUARES 

Least Squares developed by C.F. Gauss in the late 18th 

century (1795).  Gauss concluded: 

“… the most probable system of values of the quantities 

… will be that in which the sum of the squares of the 

differences between actually observed and computed 

values multiplied by numbers that measure the degrees 

of precision, is a minimum.” 

This proposition is often stated as: the best estimate is 

that which makes the sum of the squares of the 

weighted residuals a minimum. 
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Here’s how this least squares principle works. 

Consider a set of measurements of a quantity as 

…
1 2
, , ,

n
x x x  each having weight …

1 2
, , ,

n
w w w .  Denote 

the best estimate of this quantity as q and according to 

the measurement model: 

measurement + residual = best estimate 

we write 

+ = + = + =…
1 1 2 2

, , ,
n n

x v q x v q x v q 

which can be re-arranged as 

= − = − = −…
1 1 2 2

, , ,
n n

v q x v q x v q x  
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Now define a function 

ϕ
=

= ∑ 2

1

 sum of squares of weighted residials =
n

k k

k

w v   

and  

( ) ( ) ( )ϕ
=

= = − + − + −∑ �
2 2 22

1 1 2 2

1

n

k k n n

k

w v w q x w q x w q x   

We say that ϕ  is a function of q, or ( )ϕ ϕ= q  and the 

minimum value of this function can be found by 

equating the derivative 
ϕd

dq
 to zero. 
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( ) ( ) ( )
ϕ

= − + − + − =�
1 1 2 2

2 2 2 0
n n

d
w q x w q x w q x

dq
  

Cancelling the 2’s, expanding and re-arranging gives the 

equation for q 

=

=

+ + +
= =

+ + +

∑

∑

�

�

1 1 2 2 1

1 2

1

n

k k

n n k

n

n
k

k

w x
w x w x w x

q
w w w

w

  

This is the formula for the weighted mean and q is a 

best estimate (or a least squares estimate) 
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Using matrix algebra we write 

ϕ = = sum of squares of weighted residials
T

v Wv  

v is a vector of residuals W is a symmetric weight 

matrix.  For the weighted mean, W is an n,n diagonal 

matrix with weights 
k

w  on the leading diagonal.  The 

superscript T as in 
T

v  denotes the transpose of the 

vector (or matrix). 

The least squares principle is: 

ϕ = → min
T

v Wv  
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The process of minimizing the function ϕ  by equating 

derivatives to zero is common to all least squares 

estimations, including Kalman Filtering, yielding 

equations that can be solved for best estimates. 

This example of the weighted mean is taken from [2] 

Ch. 2 

A more general treatment of ‘adjustment problems’ 

where measurements (or observations) and parameters 

(or unknowns) are linked by non-linear relationships 

follows.  Detailed explanations are given in [1], [2] and 

[3]. 
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Suppose the following set of non-linear equations 

represent the mathematical model in an adjustment 

 ( ) =ˆ ˆ,F l x 0 (A) 

l is a vector of n observations, x is a vector of u 

parameters.  l̂  and v̂ refer to estimates derived from a 

least squares process such that 

 δ= + = +ˆ ˆ  and  l l v x x x  (B) 

v and δ x  are vectors of small corrections (or residuals).   
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The observations l have a priori cofactor matrix Q 

containing estimates of variances and covariances and 

the parameters x are treated as ‘observables’ with a 

priori cofactor matrix 
xx

Q .  (The idea of treating 

parameters as observable quantities allows sequential 

processing). 

Cofactor matrices Q, covariance matrices ΣΣΣΣ  and weight 

matrices W are related as follows 

σ −= =2 1

0
  and  Q W QΣΣΣΣ   

where σ 2

0
 is the variance factor 



13 

Linearizing (A) using Taylor’s theorem and ignoring 2nd 

and higher-order terms gives 

( ) ( ) ( ) ( )δ
∂ ∂

= + − + − =
∂∂ , ,

ˆ ˆˆ ˆ, ,
ˆ ˆ

l x l x

F F
F Fl x l x l l x x 0

xl
  

Using (B) we write this linearized equation as 

 ( ) ( ) ( ) ( ) ( )δ+ =
, ,1 , ,1 ,1m n n m u u m

A v B x f  (C) 

This equation represents a system of m equations that 

will be used to estimate u parameters from n 

observations. 

≥ ≥n m u 
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( ) ( )

∂ ∂
= =

∂∂
, ,

, ,

 and  
ˆ ˆm n m u

l x l x

F F
A B

xl
 are coefficient matrices 

of partial derivatives and ( ) ( ){ }= −
,1

,
m

Ff l x  is a vector of 

numeric terms. 

The least squares solution of equations (C) can be 

obtained by minimizing the function 

( )ϕ δ δ δ= + − + −2
T T T

xx
v Wv x W x k Av B x f  

k are a vector of Lagrange multipliers (at present 

unknown) and the 2 is added for convenience. 

 



15 

( )ϕ ϕ δ= ,v x  and the partial derivatives equated to zero 

are 

ϕ ϕ
δ

δ

∂ ∂
= − = = − =

∂ ∂
2 2  and 2 2

T T T T T T

xx
v W k A 0 x W k B 0

v x
 

These equations can be simplified by dividing both 

sides by 2, transposing and changing signs to give 

δ− + = + =  and  
T T

xx
Wv A k 0 W x B k 0 

Note that ( ) =
T T T T

ABC C B A  

Combining these equations with (C) and arranging in a 

matrix gives 
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δ

 −    
     =     
 −        

T

T

xx

W A 0 v 0

A 0 B k f

0 B W x 0

 (D) 

Equation (D) can be solved by the following matrix 

reduction process. 

Consider the partitioned matrix equation =Py u given 

as 

 
     

=     
     

11 12 1 1

21 22 2 2

P P y u

P P y u
 (i) 



17 

which can be expanded to give 

 + =
11 1 12 2 1

P y P y u  or ( )−= −1

1 11 1 12 2
y P u P y  (ii) 

Eliminating 
1

y  by substituting (ii) into (i) gives 

 
( )− −   

=    
     

1

11 12 111 1 12 2

21 22 22

P P uP u P y

P P uy
  

Expanding the matrix equation gives 

 
( )−

− −

− + =

− + =

1

21 11 1 12 2 22 2 2

1 1

21 11 1 21 11 12 2 22 2 2

P P u P y P y u

P P u P P P y P y u
 

and an expression for 
2

y  is given by 
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 ( )− −− = −1 1

22 21 11 12 2 2 21 11 1
P P P P y u P P u  (iii) 

Applying this matrix reduction process to (D) – see [1] 

and [3] – yields the following equations 

 ( )δ
−

= +
1

xx
x N W t (x) 

 ( )δ= −
e

k W f B x  (y) 

 = T
v QA k  (z) 

 ˆˆ ,δ= + = +x x x l l v  

where 

 
1

, ,  ,  
T T T

e e e e e

−= = = =Q AQA W Q N B W B t B W f  
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Equations (x), (y) and (z) are the solutions to Combined 

Least Squares problems.  If the problems involve non-

linear functions (as they often do in surveying) then the 

process of solution may be iterative and repeated until 

corrections δ x  become negligible.  References [1], [2] 

and [3] have examples of iterative solutions. 

An important and useful property of least squares 

solutions is that estimates of the precisions of 

parameters x̂, observations l̂  and residuals v are easily 

obtained.  These estimates are contained in the 

cofactor matrices 
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 ( )
−

= +
1

ˆˆxx xx
Q N W  

 = + −ˆ̂ ˆˆ

T T T

e xx e ell
Q Q QA W BQ B W AQ QA W AQ  

 = − ˆ̂vv ll
Q Q Q  

The matrix reduction process outlined above (a matrix 

partitioning solution to a set of equations) is important.  

It is used in the development of the Kalman Filter 

equations where a large hyper-matrix is reduced by 

repeated applications of the reduction process (see 

reference [1]) 
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The cofactor matrices ˆ̂ˆˆ ,  and 
xx vvll

Q Q Q  are obtained 

using Propagation of Variances (or cofactors) which is 

an important tool in analysis of measurements. 

Suppose that computed quantities y are linear 

functions of variables x (with cofactor matrix 
xx

Q ) and 

constant terms b (A is a coefficient matrix) 

 = +y Ax b 

then, Propagation of Variances gives 

 = T

yy xx
Q AQ A  (*) 
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If y are non-linear functions of x then Propagation of 

Variances gives 

 = T

yy yx xx yx
Q J Q J  (**) 

where 
yx

J  is the Jacobian matrix of partial derivatives. 

For most of the cofactor propagation used in least 

squares we are dealing with linear or linearized 

functions so (*) is most often used. 

Cofactor propagation is very important in the 

development of the Kalman Filter equations. 
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The general case of Combined Least Squares [see 

solutions (x), (y) and (z) above] may be simplified into 

the following three cases: 

[1] Combined Least Squares 

 For most least squares problems, the parameters x 

are not ‘observables’ and 
XX

=W 0.  The system of 

equations is  

 δ+ =Av B x f  

 and the solutions are 
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1δ −=x N t 

 ( )δ= −
e

k W f B x  

 = T
v QA k  

 
0 ˆˆ ,δ= + = +x x x l l v  

where 

 
1

, ,  ,  
T T T

e e e e e

−= = = =Q AQA W Q N B W B t B W f  

 [See reference [1] Example 2] 
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[2] Indirect Least Squares (Parametric case) 

 In this case 
xx

=W 0 and =A I (the Identity matrix). 

The system of equations is  

 δ+ =v B x f 

 and the solutions are 

 
1δ −=x N t 

 δ= −v f B x  

 
0 ˆˆ ,δ= + = +x x x l l v  

 where  ,  
T T= =N B WB t B Wf  

 [See reference [1] Examples 1, 3 and 4] 
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[3] Observations Only Least Squares (Condition case) 

 In this case  and 
xx

= =W 0 B 0.  The system of 

equations is 

 =Av f  

 and the solutions are 

 
e

=k W f 

 = T
v QA k  

 ˆ = +l l v  

 [See reference [1], Example 3] 
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KALMAN FILTER 

The Kalman Filter is an estimation process developed 

by Rudolf E. Kalman in the early 1960’s.  It’s first 

practical use was in the navigation system of the Apollo 

space craft.  The Kalman Filter can be regarded as a 

logical extension of Gauss’ original least squares 

technique and the derivation of the equations of the 

Filter set out below follows the ‘usual’ surveying 

development of minimizing a function of sums of 

squares of weighted residuals.   
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For this development it is useful to consider a ship 

moving in a navigation channel.  At regular intervals of 

time (epochs 
k

t ) a measurement system on board 

determines the distances to known navigation beacons.  

We wish to determine the position and velocity of the 

ship as it moves down the channel. 

Suppose we write a system of equations as 

 

1 1 1 1

1

primary at 

primary at 

secondary or dynamic

k k k k

k k k k

k k m

t

t

− − − −

−

+ =

+ =

= +

v Bx f

v Bx f

x Tx v

 (a) 
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x is the state vector containing the parameters of the 

system, in this case, the position ( ),E N  and the 

velocity ( ),E N� � , four parameters 

v is the vector of residuals associated with the 

measurements l such that ˆ = +l l v  

B is a coefficient matrix 

f is a vector of numeric terms derived from the 

measurements l 

T is the Transition matrix 

m
v  is a vector of residuals associated with the dynamic 

or secondary model 
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The measurements l and the model corrections 
m

v  have 

associated cofactor matrices  and 
m

Q Q  and weight 

matrices 
1−=W Q  

It is useful to assume the vector 
m

v  is the product of 

two matrices 

 
m

=v Hw (b) 

where H is a coefficient matrix and w is vector of 

quantities known as the system driving noise. 

Assuming the system driving noise w has a cofactor 

matrix 
w

Q , applying Propagation of Variances to (b) 
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gives the cofactor matrix of the system of the 

secondary model 

 
T

m w
=Q HQ H  

Applying the least squares principle to equations (a), 

the function ϕ  to be minimized is 

 
( )

( )

( )

1 1 1

1 1 1 1 1

2

3 1

2

2

2

T T T

k k k k k k m m m

T

k k k k

T

k k k k

T

k k m

ϕ − − −

− − − −

−

= + +

− + −

− + −

− − −

v W v v W v v W v

k v B x f

k v B x f

k x Tx v
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Now ( )1 1
, , , ,

k k m k k
ϕ ϕ − −= v v v x x  and differentiating ϕ  

with respect to the variables gives 

 

1 1 1 2

1

3 1 1 3

1

2 3

2 2 2 2

2 2 2 2

2 2

T T T T

k k k k

k k

T T T T

m m k

m k

T T

k

k

ϕ ϕ

ϕ ϕ

ϕ

− −

−

−

−

∂ ∂
= − = = − =

∂ ∂

∂ ∂
= + = = − + =

∂ ∂

∂
= − − =

∂

v W k 0 v W k 0
v v

v W k 0 k B k T 0
v x

k B k 0
x   
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Transposing, re-arranging and dividing by 2 gives 

 

1 1 1 1 1 3

2 1 2 3

3

T T

k k k

T

k k k

m m

− − −

−

− = − + =

− = − − =

+ =

W v k 0 B k T k 0

W v k 0 B k k 0

W v k 0

 

Combining these equations with equations (a) – the 

primary and secondary model equations – in the form 

of a hyper-matrix gives  
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1 1

1 1

2

1 3 1

1

k k

k k

m m

T T

k

T

k

k k

k k k

k

− −

−

− −

−

−

−

−
=

− −

− −

     
     
     
     
     
     
     
     
     
     
     
     

W 0 0 I 0 0 0 0 v 0

0 W 0 0 I 0 0 0 v 0

0 0 W 0 0 I 0 0 v 0

0 0 0 B 0 T 0 0 k 0

0 0 0 0 B I 0 0 k 0

I 0 0 0 0 0 B 0 k f

0 I 0 0 0 0 0 B x f

0 0 I 0 0 0 T I x 0

  

hyper-matrix (c) 
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Partial solution 
1k−

′x   

Using only the observations 
1k−l  at time 

1k
t −  a partial 

solution 
1k−

′x  can be obtained from the hyper-matrix (c) 

by deleting all matrices associated with the primary 

model at 
k

t  and the secondary model.  This gives (after 

some re-arrangement) 

 

1 1

1 1 1

1 1

k k

k k

T

k k

− −

− −

− −

′−     
     ′ =
     

′          

W I 0 v 0

I 0 B k f

0 B 0 x 0
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This is identical in form to previous equation (D) and 

the solution is 

 
1

1 1 1k k k

−

− − −
′ =x N t   (d) 

where 

 
1 1 1 1 1 1 1 1

      
T T

k k k k k k k k− − − − − − − −= =N B W B t B W f    

with the cofactor matrix of the partial solution 

 
1

1

1kx k−

−
′ −=Q N    
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Solution for ˆ
k

x   

The hyper-matrix (c) is partitioned in a way that allows 

for the elimination of the vectors 
1
, ,

k k m−v v v  by the 

reduction process set out previously.  And after this the 

parameters 
1k−x  are eliminated (by the same process) 

yielding 

 

1 1

1 3 1 1

2

T

m k k k

T

k k

k k k

− −

− − −
   +  
    − − =    
        

Q TN T I 0 k TN t

I 0 B x 0

0 B Q k f

  (e) 
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Now, following equations (a) we write the predicted 

state vector 
1k k−

′ ′=x Tx and substituting (d) gives 

 
1

1 1k k k

−

− −
′ =x TN t  (f) 

And applying Propagation of Variances gives (after 

some reduction) the cofactor matrix of the predicted 

residuals 

∗∗∗ 
1k kx x m−′ ′= +Q TQ T Q  (g) 

The quantities in (f) and (g) appear in (e) and we may 

write 
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3

2

kx k

T

k k

k k k

′
′     

     − − =
     
          

Q I 0 k x

I 0 B x 0

0 B Q k f

 

We may apply the matrix reduction process to this 

matrix to obtain (after some manipulation) 

 ( ) ( )
1

k k

T T

k k x k k k x k k k k

−

′ ′
′ ′= + + −x x Q B Q B Q B f B x  
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In Kalman Filtering, the expression  

∗∗∗ ( )
1

k k

T T

x k k k x k

−

′ ′= +K Q B Q B Q B  

is called the gain matrix 

Using this result gives the filtered state vector 

∗∗∗ ( )ˆ
k k k k k

′ ′= + −x x K f B x  

Applying Propagation of Variances to this equation 

gives (after some manipulation) 

∗∗∗ 
( ) ( )

( )

ˆ
k k

k

T T

x k x k k

T

k x

′

′

= − − +

= −

Q I KB Q I KB KQ K

I KB Q
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THE KALMAN FILTER 

(1) Compute the predicted state vector at 
k

t  

 
1

ˆ
k k−
′ =x Tx   

(2) Compute the predicted state cofactor matrix 

at 
k

t   

 
1

ˆ
k kx x m−′ = +Q TQ T Q  

(3) Compute the Kalman Gain matrix 

 ( )
1

k k

T T

x k k k x k

−

′ ′= +K Q B Q B Q B  
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(4) Compute the filtered state vector by updating 

the predicted state with the measurements at 

k
t  

 ( )k k k k k
′ ′= + −x x K f B x  

(5) Compute the filtered state cofactor matrix 

 ( )ˆ
k kx k x′= −Q I KB Q  

Go to step (1) and repeat the process for the next 

measurement epoch 
1k

t +   
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MATRIX REDUCTION EXERCISE 

If a matrix can be partitioned as follows 

 
     

=     
     

11 12 1 1

21 22 2 2

P P y u

P P y u
 (i) 

then (after some manipulation) 
1

y  is eliminated and 

 ( )− −− = −1 1

22 21 11 12 2 2 21 11 1
P P P P y u P P u  (ii) 

Use this matrix reduction process to obtain an 

expression for δ x  from the system of equations 

expressed in matrix form as 
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δ

 −    
     =     
 −        

T

T

xx

W A 0 v 0

A 0 B k f

0 B W x 0

 (A) 
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SOLUTION 

Partitioning (A) in the same way as (i) 

 

T

T

xx
δ

 −    
     =     
 −        

W A 0 v 0

A 0 B k f

0 B W x 0

  

then eliminating v by applying (ii) gives 

 

[ ]1 1T

T

xx
δ

− −
− −− = −

−

                            
          

0 B A k f A
0W WA 0

B W 0 x 0 0
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Remembering that 
1−=Q W  the equation can be 

simplified as 

 

T

T

xx
δ

     
=     

−      

k fAQA B

x 0B W
 (B) 

Again, applying (ii) to the partitioned equation (B) gives 

 ( )( ) ( )
1 1

T T T T

xx
δ

− −

− − = −W B AQA B x 0 B AQA f  

and re-arranging gives the normal equations 

 ( )( ) ( )
1 1

T T T T

xx
δ

− −

+ =B AQA B W x B AQA f  
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LINE OF BEST FIT EXERCISE 

The diagram overleaf shows part of an Abstract of Field 

Notes with offsets from occupation to a traverse line in 

Whitten Street.  The bearing of the traverse line is 

90 00′�
 

Use Indirect Least Squares (and least_squares.m) to 

determine the bearing of the line of best fit through the 

occupation in Whitten Street.  You may consider the 

chainages (linear distances along Whitten Street) to be 

free of error. 
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SOLUTION 

The equation of the Line of Best Fit is: y bx c= + . 

The y-values are the offsets, the x-values are derived 

from the chainages and c is a constant. 

Reverse the chainages to create distances from B.  

These will be the x-values (considered error free). 

The offsets (the y-values) are the measurements, 

considered to be affected by small random errors, and 

assumed to be of equal precision. 

A Table of values is shown overleaf. 
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Point x (m) y (m) weight w 

1 (B) 0.000 1.320 1 

2 49.800 1.250 1 

3 100.060 1.180 1 

4 149.700 1.110 1 

5 (A) 200.140 1.050 1 

 

The observation equation (or measurement model) is 

 
k k k

y v bx c+ = +   
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The set of equations for each measurement are 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

y v bx c

y v bx c

y v bx c

y v bx c

y v bx c

+ = +

+ = +

+ = +

+ = +

+ = +

 

This equations can be re-arranged in the matrix form 

form + =v Bx f where the residuals v and the 

‘unknowns’ (b, c) in x and the coefficient matrix B are 

on the left-hand-side of the equals sign. 
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The measurements (or functions of measurements) are 

on the right-hand-side forming the vector of numeric 

terms f. 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

1

1

1

1

1

v x y

v x y
b

v x y
c

v x y

v x y

− − −     
     − − −
      

− − −+ =      
      − − −     
     − − −     
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Now create an ASCII text file that can be used in 

MATLAB function least_squares.m 

This text file has a standard format 

Save the text file as best_fit_exercise.txt 

% Data file for function "least_squares.m" 

% Line of Best Fit Exercise 

%  B(1)   B(2)   f     w 

    0.0    -1  -1.320  1 

  -49.800  -1  -1.250  1 

 -100.060  -1  -1.180  1 

 -149.700  -1  -1.110  1 

 -200.140  -1  -1.050  1 
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MATLAB function least_squares.m uses the ‘standard 

solution’ for Indirect Least Squares 

 
1−=x N t 

 = −v f Bx  

 ˆ = +l l v  

 where  ,  
T T= =N B WB t B Wf  

The function will read the data text file and place the 

results in another text file with the extension .out 

In this case:  best_fit_exercise.out  
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Part of the output file is shown below 

 

Vector of solutions x 

    -1.359437853e-03 

     1.317862219e+00 

  

Vector of residuals v 

   -0.002138 

    0.000162 

    0.001837 

    0.004354 

   -0.004216 
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The slope of the line is 1.359437tan 853 03b eθ − −= =  

and 
0

0 04 40θ ′ ′′= −  (angles are considered +tve anti-

clockwise from the x-axis) and the bearing of the line of 

best fit will be 
0

90 04 40′ ′′ 

The offset from the traverse to the line of best fit at B is 

1.318 m (the value of c) 

The offset from the traverse to the line of best fit at A is 

1.046 m 
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Part of MATLAB function least_squares.m 

Read the data file into memory 

filepath = strcat('d:\temp\','*.txt'); 

[infilename,inpathname] = uigetfile(filepath); 

infilepath = strcat(inpathname,infilename); 

rootName   = strtok(infilename,'.'); 

outfilename = strcat(rootName,'.out'); 

outfilepath = strcat(inpathname,outfilename); 

 

%---------------------------------------------------------- 

% 1. Load the data into an array whose name is the rootName 

% 2. set fileTemp = rootName 

% 3. Copy columns of data into individual arrays 

%---------------------------------------------------------- 

load(infilepath); 

fileTemp = eval(rootName); 
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Establish the matrices B, f and W 
% get the number of rows (n) and the number of columns (m) 

[n,m] = size(fileTemp); 

% set the number of unknowns 

u = m-2; 

% copy the data into B, f and w 

B = fileTemp(:,1:u); 

f = fileTemp(:,u+1); 

w = fileTemp(:,m); 

% set the elements of the weight matrix W 

W = zeros(n,n); 

for k = 1:n 

  W(k,k) = w(k); 

end   
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Form the normal equations =Nx t 
% form the normal equation coefficient matrix N 

N = B'*W*B; 

% form the vector of numeric terms t 

t = B'*W*f; 

Solve the normal equations 
1−=x N t 

% solve the system Nx = t for the unknown parameters x 

Ninv = inv(N); 

x = Ninv*t; 

Compute the residuals = −v Bx f  
% compute residuals 

v = f - (B*x); 
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Compute the variance factor 
2

0
σ  and the cofactor 

matrices , ,
xx vv ll

Q Q Q  

% compute the variance factor 

vfact = (f'*W*f - x'*t)/(n-u); 

% compute the cofactor matrix of the adjusted quantities 

Qxx = Ninv; 

% compute the cofactor matrix of the residuals 

Qvv = inv(W)-B*Ninv*B'; 

% compute the cofactor matrix of the adjusted quantities 

Qll = inv(W)-Qvv; 

Open the data file and print out results 

% open the output file print the data 

fidout  = fopen(outfilepath,'wt'); 
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KALMAN FILTER:  SHIP IN CHANNEL EXERCISE 

•
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•

•

•
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The diagram shows the path of a ship in a navigation 

channel at a constant speed and heading.  Navigation 

equipment on board automatically measures distances 

to transponders at three navigation beacons A, B and C.  

The measured distances have an estimated standard 

deviation of 1 metre and each set of measurements 

occur at 60-second time intervals. 

The coordinates of the navigation beacons are 

A: 10000.000 E B: 13880.000 E C: 15550.000 E 

 10000.000 N  11250.000 N   7160.000 N 
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Transponder measurements at 60-second intervals 

 

Measurement 

Epoch 

Transponder measurements to 

navigation beacons 

A B C 

1 4249.7 7768.6 7721.1 

2 3876.1 7321.4 7288.5 

3 3518.4 6872.2 6857.6 

4 3193.3 6426.0 6429.1 

5 2903.6 5982.6 6009.7 

6 2664.0 5543.2 5596.6 

7 2490.9 5107.7 5191.5 

8 2392.9 4678.9 4797.1 

9 2383.2 4253.4 4417.8 

10 2463.0 3841.7 4050.9 

Measurement 

Epoch 

Transponder measurements to 
navigation beacons 

A B C 

11 2623.2 3435.6 3709.9 

12 2849.0 3054.2 3395.8 

13 3126.7 2692.9 3119.4 

14 3446.9 2366.6 2891.1 

15 3793.4 2096.4 2724.4 

16 4166.0 1900.6 2630.9 

17 4552.2 1804.7 2610.2 

18 4956.2 1824.8 2677.4 

19 5366.4 1959.6 2819.7 

20 5785.0 2182.8 3023.5 

 

The exercise is to establish the matrix forms of the 

primary and secondary measurement models suitable 

for processing the measurements in a Kalman Filter. 
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Primary Measurement Model 

 ˆ
k k k k

+ =v B x f  

The measurements can be written as 

 ˆ
k k k

+ =l v l  (a) 

where 
k

l  is the m,1 vector of measurements 

(transponder distances), vk is the m,1 vector of 

residuals and ˆ
k
l  are estimates of the true (but unknown) 

value of the measurements.  m = 3 is the number of 

measurements at each epoch. 
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ˆ
k
l are non-linear functions of the coordinates of the ship 

and the beacons and 

coordinates E,N of the beacons A, B and C and the 

filtered state coordinates ˆ ˆ,
k k

E N  of the ship at time 
k

t  

 
( )

( ) ( )
2 2

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ   for , ,

j k k j j

k j k j

l l E N E N

E E N N j A B C

=

= − + − =
 

Expanding this equation into a series using Taylor's 

theorem, and ignoring higher-order terms gives 
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 ( ) ( )
ˆ ˆ

ˆ ˆ ˆ
ˆ ˆk k k k

k k

l l
l l E E N N

E N

∂ ∂
′ ′ ′= + − + −

∂ ∂
 

where ,
k k

E N′ ′ are approximate coordinates of the ship at 

k
t , l′ is an approximate distance computed using ,

k k
E N′ ′ 

and the coordinates of the beacon, and the partial 

derivatives are 

 

ˆ

ˆ

ˆ
      for , ,

ˆ

k j

j

k j

k j

j

k j

E El
d

E l

N Nl
c j A B C

N l

′ −∂
= =

′∂

′ −∂
= = =

′∂
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For a single distance we may re-arrange (a) as 

 ˆv l l− = −   

and substituting the Taylor series approximation for l̂  

and re-arranging gives 

 ( )ˆ ˆ  for , ,
j j k j k j j j k j k

v d E c N l l d E c N j A B C′ ′ ′− − = − + − − =  

This primary measurement model can be expressed in 

terms of the filtered state vector ˆ
k

x  at time 
k

t  in the 

matrix form as 
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ˆ
0 0

ˆ
0 0

0 0

0 0

0 0

0 0

A A A

B B B

C C Ck k

k

A A A A

B B B B

C C C Ck k

k

E
v d c

N
v d c

E
v d c

N

E
l l d c

N
l l d c

E
l l d c

N

 
− −     

     + − −
     

− −        
 

′ 
′ − − −     ′     ′= − + − −

    ′ 
′ − − −         ′ 

�

�

�

�

 (b) 

or ˆ
k k k k k k k k

′ ′+ = − + =v B x l l B x f  



69 

Secondary (or dynamic) model 

 
1k k m−= +x Tx v  (c) 

The model corrections 
m

v  can be written as the product 

of two matrices as 

 
m

=v Hw  (d) 

where w is the system driving noise and H is a 

coefficient matrix.  Applying Propagation of Variances 

to (d) gives the cofactor matrix of the system driving 

noise 

 
T

m w
=Q HQ H  (e) 
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To determine the elements of the transition matrix T 

consider the position of the ship as a simple function of 

time, say ( )y y t= .  Now, expand the function ( )y t  into 

a series about the point 
k

t t=  using Taylor’s theorem 

 

( ) ( ) ( ) ( )
( )

( )

( )
( )

2

3

2!

3!

k

k k k k

k

k

t t
y t y t t t y t y t

t t
y t

−
= + − +

−
+ +

� ��

��� �

  

where ( )k
y t� , ( )k

y t�� , ( )k
y t��� , etc. are derivatives of y with 

respect to t evaluated at 
k

t t=  
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Letting 
k

t t tδ= +  and then 
k

t t tδ− =  then

( ) ( ) ( )
( )

( )
( )

( )
2 3

2! 3!

k k

k k k

y t y t
y t t y t y t t t tδ δ δ δ+ = + + + +

�� ���
� �

We now have a power series expression for the 

continuous function ( )y t  at the point 
k

t t tδ= +  

Similarly, assuming ( )y t� , ( )y t�� , etc. to be continuous 

functions of t then 

 
( ) ( ) ( )

( )
( )

( ) ( ) ( )

2

2!

k

k k k

k k k

y t
y t t y t y t t t

y t t y t y t t

δ δ δ

δ δ

+ = + + +

+ = +

���
� � �� �

�� �� ���
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Now considering two time epochs 
k

t  and 
1k

t −  separated 

by a time interval tδ  we may combine the equations 

into general matrix forms 

 
( ) [ ]

2
1
2

1

1

1

0 1 k

k k

y t y t
y

y y t

δ δ

δ −

−

      
= +       

        
��

� �
 (f) 

and 

 

( ) ( )

( ) [ ]

3
12

1
6

2
2

1
2 1

1

1

0 1

0 0 1

k

k k

ty t t y

y t y t y

y y t

δδ δ

δ δ

δ
−

−

             = +                  

� � ���

�� ��
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For this exercise, the state vector of the ship in the 

channel contains position ( ),
k k

E N  and velocity ( ),
k k

E N� �  

and we choose equation (f) as representative of the 

secondary (or dynamic) model [see (c) and (d)] 

 
1k k−= +x Tx Hw 

( )

( )

2
1
2

2
1
2

1

1

1 0 0 0

0 1 0 0

0 0 1 0 0

0 0 0 1 0

k

k k

E t E t

N t N Et

E E Nt

N N t

−

−

 ∆ ∆     
      ∆   ∆     = +         ∆        
       ∆ 

��

� � ��

� �
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In this exercise it is assumed that the system driving 

noise w contains small random accelerations caused by 

the sea and wind conditions, the steering of the ship, 

the engine speed variation, etc. 

For this exercise assume that the estimates of the 

variances of the system driving noise are 
2 2
 and 

E N
s s�� �� and 

the cofactor matrix of the system driving noise is 

 

2

2

0

0

E

w

N

s

s

 
=  
 

Q
��

��

 


